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From Jupyter to MLOps:

Jupyter as a key integrator for MLOps

Sangwoo Shim
Co-founder and CTO at MakinaRocks
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MLOps Trend
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Our Focus

1.Liason between data scientists and MLOps engineers
2.Model Observability

3.Various model deployment strategies

4.Performance monitoring

5. Interoperability



Outline

1.Data Scientists in MLOps: Role and Challenges
2.MakinaRocks Link: Streamlining MLOps Pipelines Creation
3.MakinaRocks Runway: Managing Models at Scale

4.Looking Ahead: The Future of MLOps



Machine Learning Operations
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Machine Learning Operations

Traditional approach
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Machine Learning Operations
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Machine Learning Operations

MLOps approach
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More Burdens for Data Scientists

Pipelines
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Outline

1.Data Scientists in MLOps: Role and Challenges

2.MakinaRocks Link: Streamlining MLOps Pipelines Creation

3.MakinaRocks Runway: Managing Models at Scale

4.Looking Ahead: The Future of MLOps



Execution in Jupyter Notebook
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Execution in Jupyter Notebook
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Execution in MakinaRocks Link
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Execution in MakinaRocks Link
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Execution in MakinaRocks Link

Parametrized
pipeline

Parameter

Cell 1

* Argo Workflow

Cell 2  Link Runtime

* Any other DAG-based

pipeline runners
Cell 3



Outline

1.Data Scientists in MLOps: Role and Challenges
2.MakinaRocks Link: Streamlining MLOps Pipelines Creation

3.MakinaRocks Runway: Managing Models at Scale

4.Looking Ahead: The Future of MLOps



MakinaRocks Runway

1.Data source and Dataset management
2.Pipeline creation (with Link)

3. Export pipeline to runway

4.Deploy registered model
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Ready to takeoff? It’s time to Let your AI run

contact@makinarocks.ai
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